Abstract

In this paper we study the dynamical properties of charged systems immersed in an external magnetic field and perturbed by a set of scalar operators breaking translations either spontaneously or pseudo-spontaneously. By combining hydrodynamic and quantum field theory arguments we provide analytic expressions for all the hydrodynamic transport coefficients relevant for the diffusive regime in terms of thermodynamic quantities and DC thermo-electric conductivities. This includes the momentum dissipation rate. We shed light on the role of the momentum dissipation rate in the transition between the pseudo-spontaneous and the purely explicit regimes in this class of systems. Finally, we clarify several relations between the hydrodynamic transport coefficients which have been observed in the holographic literature of charge density wave models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.