Abstract

A numerical solution for the hydrodynamic lubrication of finite porous journal bearings considering the flexibility of the liner is introduced. The Brinkman-extended Darcy equations and the Stokes' equations are utilized to model the flow in the porous region and fluid film region, respectively. A stress jump boundary condition at the porous media/fluid film interface and effects of viscous shear are included into the lubrication analysis. Elrod's cavitation algorithm, which automatically predicts film rupture and reformation in the bearing, is implemented in the solution scheme. The present analysis predictions for pressure distributions, load carrying capacity, and friction factor are in good agreement with three different sets of experimental results available in the literature. Furthermore, the effects of dimensionless permeability parameter, and stress jump parameter on performance parameters such as load carrying capacity, side leakage, friction factor, and attitude angle, are presented and discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.