Abstract

AbstractWe derive new analytical results for the hydrodynamic force exerted on a sinusoidally oscillating porous shell and a sphere of uniform density in the Stokes limit. The coupling between the spherical particle and the solvent is done using the Debye–Bueche–Brinkman (DBB) model, i.e. by a frictional force proportional to the local velocity difference between the permeable particle and the solvent. We compare our analytical results and existing dynamic theories to lattice–Boltzmann simulations of the full Navier–Stokes equations for the oscillating porous particle. We find our analytical results to agree with simulations over a broad range of porosities and frequencies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call