Abstract

We study numerically the role of hydrodynamics in the liquid-hexatic transition of active colloids at intermediate activity, where motility induced phase separation (MIPS) does not occur. We show that in the case of active Brownian particles (ABP), the critical density of the transition decreases upon increasing the particle's mass, enhancing ordering, while self-propulsion has the opposite effect in the activity regime considered. Active hydrodynamic particles (AHP), instead, undergo the liquid-hexatic transition at higher values of packing fraction $\phi$ than the corresponding ABP, suggesting that hydrodynamics have the net effect of disordering the system. At increasing densities, close to the hexatic-liquid transition, we found in the case of AHP the appearance of self-sustained organized motion with clusters of particles moving coherently.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.