Abstract
One of the most intriguing phenomena in active matter has been the gas-liquid-like motility-induced phase separation (MIPS) observed in repulsive active particles. However, experimentally, no particle can be a perfect sphere, and the asymmetric shape, mass distribution, or catalysis coating can induce an active torque on the particle, which makes it a chiral active particle. Here, using computer simulations and dynamic mean-field theory, we demonstrate that the large enough torque of circle active Brownian particles in two dimensions generates a dynamical clustering state interrupting the conventional MIPS. Multiple clusters arise from the combination of the conventional MIPS cohesion, and the circulating current caused disintegration. The nonvanishing current in non-equilibrium steady states microscopically originates from the motility "relieved" by automatic rotation, which breaks the detailed balance at the continuum level. This suggests that no equilibrium-like phase separation theory can be constructed for chiral active colloids even with tiny active torque, in which no visible collective motion exists. This mechanism also sheds light on the understanding of dynamic clusters observed in a variety of active matter systems.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have