Abstract

An Euler–Euler two-fluid model incorporating with the influence of gravity to describe the hydrodynamic behavior of dense gas-particle flows in gas-fluidization reactor is presented and simulated numerically. It based on the dense gases of kinetic theory and the kinetic theory of granular media for considering the interactions between particle–particle and gas-particles. Gas turbulent flow is solved by large eddy simulation. Results showed that the mean value and the variance of vertical particle velocity are greater than those of horizontal velocity under both lunar-reduced and earth gravity conditions. Comparison of the earth gravity, reduced condition is easier to produce the bigger volume bubble and the more heterogeneous flow structure, as well as the greater the variance of vertical and horizontal particle velocity and the higher particle fluctuation intensity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.