Abstract

ABSTRACT Recently, a newly designed type of energy-input extraction column, agitated-pulsed column (APC), has been achieved high mass-transfer efficiency due to the small-size droplets and high dispersed-phase holdup. In view of the lack of feasible population-balance-model (PBM) kernel functions in APC, parameter optimization is conducted by a simplified PBM method. Then the optimized PBM kernel functions are implemented in the computational fluid-dynamics (CFD) code to investigate local two-phase flow behaviors in a 25 mm APC. The results show that the CFD-PBM successfully predicts the drop-size distribution measured in the experiments. CFD-PBM also gives good prediction of Sauter mean diameter and dispersed-phase holdup. The local flow behaviors are illustrated to understand the effects of operating conditions on the hydrodynamic performance. This work demonstrates a possibility for prediction of drop-size distribution by the combination of simplified PBM and CFD simulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call