Abstract
A coupled computational fluid dynamics (CFD) and discrete element method (DEM) model was developed to analyze the fluid-particle and particle-particle interactions in a 3D liquid-solid fluidized bed (LSFB). The CFD-DEM model was validated using the Electrical Resistance Tomography (ERT) experimental method. ERT was employed to measure the bed-averaged particle volume fraction (BPVF) of 0.002 m glass beads fluidized with water for various particle numbers and flow rates. It was found that simulations employing the combination of the Gidaspow drag model with pressure gradient and virtual mass forces provided the least percentage error between experiments and simulations. It was also found that contact parameters must be calibrated to account for the particles being wet. The difference between simulations and experiments was 4.74%. The CFD-DEM model was also employed alongside stability analysis to investigate the hydrodynamic behavior within the LSFB and the intermediate flow regime for all cases studied.
Submitted Version (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have