Abstract
AbstractIsotopically labeled alkanes play a crucial role in organic and pharmaceutical chemistry. While some deuterated methylating agents are readily available, the limited accessibility of other deuteroalkyl reagents has hindered the synthesis of corresponding products. In this study, we introduce a nickel‐catalyzed system that facilitates the synthesis of various deuterium‐labeled alkanes through the hydrodeuteroalkylation of d2‐labeled alkyl TT salts with unactivated alkenes. Diverging from traditional deuterated alkyl reagents, alkyl thianthrenium (TT) salts can effectively and selectively introduce deuterium at α position of alkyl chains using D2O as the deuterium source via a single‐step pH‐dependent hydrogen isotope exchange (HIE). Our method allows for high deuterium incorporation, and offers precise control over the site of deuterium insertion within an alkyl chain. This technique proves to be invaluable for the synthesis of various deuterium‐labeled compounds, especially those of pharmaceutical relevance.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have