Abstract
Hydrodesulfurization (HDS) reaction of catalytic cracked gasoline (CCG) on Co–Mo/γ-Al2O3 was investigated in detail to make clear the important factors for deep HDS of CCG. A CCG containing 229 ppm sulfur and 30.4 vol% olefins was used in this study. Eleven alkylthiophenes and 2 alkylbenzothiophenes, 3 alkylthiacyclopentanes, and 2 disulfides were identified in this CCG by means of GC-AED analyses. In the reaction at 220 °C and 1.6 MPa using a conventional flow reactor of bench pilot scale, these sulfur compounds were hydrodesulfurized, whereas thiols were produced from H2S and olefins. The reactions of thiophene HDS, isoolefin and n-olefin hydrogenation (HG) were studied to clarify the active sites on the catalyst. First, the effect of H2S on the reaction was examined. The HG of n-olefin as well as thiophene HDS was inhibited by H2S, while the HG of isoolefin was promoted. The effects of Co on these three reactions were also examined over the catalysts with different Co/(Co + Mo) ratios. Thiophene HDS was promoted by Co, while isoolefin HG was little affected and n-olefin HG was largely retarded. From these examinations, three types of active sites for thiophene HDS, isoolefin HG and n-olefin HG were proposed. Oligomers of isoolefins were found in the isoolefin hydrotreated product. The possibility of improving the HDS selectivity by carbonaceous deposit was investigated for HDS reactions of CCG and model compounds. The coking pretreatment was carried out on the catalyst and each reaction was examined. HDS selectivity (higher activity for HDS and lower activity for olefin HG) on CCGHDS was improved. Relative deactivation was in the following order, isoolefin HG > thiophene HDS > n-olefin HG. Pyridine modification (i.e. pyridine injection at 150 °C and partial pyridine desorption at 300 °C) was investigated on thiophene and olefins reaction. Thiophene HDS was little affected. Olefin HG and thiol production reaction were strongly inhibited. Improvement of HDS selectivity was observed in the reactions of CCG after pyridine modification. Improvement of HDS selectivity by pyridine modification was considered to result from the selective deactivation of the active sites for olefin reactions (hydrogenation and thiol production).
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have