Abstract
The calcination temperature (Cal-Temp) plays a vital role in the performance of supported metal catalysts. In this work, the alumina supported Ni, NiMo, Co, and CoMo catalysts were prepared at different Cal-Temp. The catalysts were characterized by various techniques to identify the catalytically active different surface species to correlate their role in the hydrodeoxygenation of stearic acid. With increasing Cal-Temp, the metal dispersion was increased for Ni, NiMo, and CoMo catalyst (up to 973 K) and decreased for Co catalyst. With increasing Cal-Temp, the catalytic activity was thus increased for Ni and NiMo catalyst and decreased for Co catalyst. The activity of CoMo catalyst was, however, enhanced with rising Cal-Temp up to 973 K and declined slightly after that. The optimum Cal-Temp for Ni, NiMo, Co, and CoMo catalyst was found to be 1023 K, 973 K, 773 K, and 973 K. The reaction followed the decarbonylation route over active metallic centers (Ni and Co) and the HDO route over oxophilic M2+⋅MoO2 (M = Ni/Co) and reducible cobalt oxide species. The C17 alkane was thus the principal product over Ni catalyst, whereas C18 alkane was the primary product over CoMo and NiMo catalyst. In contrast, both C17 and C18 alkanes were significant over Co catalyst.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.