Abstract
The hydrodeoxygenation (HDO) of m-Cresol (a representative of lignin bio-oil) has enormous potential for the production of valuable compounds. The products obtained from HDO of m-Cresol (m-Cr) are blendable into conventional fuels and essential for chemical industries such as plastic, fiber, rubber, resin, film, and coating industry. Ruthenium loaded acidic supports (ZSM-5, β-zeolite, y-zeolite, mordenite, COK12, ZrO2, TiO2) were used for the selective hydrodeoxygenation of m-Cresol into methylcyclohexane (MCXane). The effects of acid sites, as well as the pore size of the different supports on the hydrodeoxygenation activity and selectivity towards methylcyclohexane were addressed. The methylcyclohexane yield increased with increasing number of acid sites up to optimum acidity (532 μmol/gm) along with pore size (5.9 Ao). The experiments were carried out at 225–325 °C and 1–40 bar hydrogen pressure in a fixed bed reactor and observed that reaction temperature, and hydrogen pressure promoted the hydrodeoxygenation. The Ru/ZSM-5 is a stable (240 h) catalyst and displayed excellent behavior in both hydrodeoxygenation activity (100%) and methylcyclohexane selectivity (100%) for m-Cresol.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have