Abstract

AbstractModel estimated monthly water balance (WB) components (i.e., potential evapotranspiration, actual evapotranspiration, and runoff [R]) for 848 United States (U.S.) Geological Survey 8‐digit hydrologic units located in the Mississippi River Basin (MRB) are used to examine the temporal and spatial variability of the MRB WB for water years 1901 through 2014. Results indicate the MRB can be divided into nine subregions with similar temporal variability in R. The WB analyses indicated ~79% of total water‐year MRB runoff is generated by four of the nine subregions and most of the R in the basin is derived from surplus (S) water during the months of December through May. Furthermore, the analyses showed temporal variability in S is largely controlled by the occurrence of negative atmospheric pressure anomalies over the western U.S. and positive atmospheric pressure anomalies over the eastern U.S. coast. This combination of atmospheric pressure anomalies results in an anomalous flow of moist air from the Gulf of Mexico into the MRB. In the context of paleo‐climate reconstructions of the Palmer Drought Severity Index, since about 1900 the MRB has experienced wetter conditions than were experienced during the previous 500 years.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call