Abstract

The permafrost headwater catchments in the Tibetan Plateau (TP) have experienced extensive permafrost degradation, which may cause major changes in riverine solutes. However, surface water hydrochemistry and its influencing factors in such catchments are poorly understood. Hydrochemistry data for different surface waters were obtained for the Yakou catchment in the Northeastern TP. The results indicate that the ionic and organic concentrations of frozen soil seeps (FSS) were higher on the north-facing slope compared to the south-facing slope, and that FSS may be involved in streamflow generation processes and in determining the spatial pattern of riverine solutes. The north-facing slope of the catchment has a thin active layer and wet moisture conditions compared to the south-facing slope; hence supra-permafrost water, with high ionic concentrations, can drain to the ground surface as FSS in the riparian zone and then recharge the surface ponding water and the main stream water. The high ionic concentrations of the supra-permafrost water and FSS can be attributed to intense rock weathering and evaporative effect, together with the high mobility of elements and the transport of organic matter. The tributaries, with low ionic concentrations, comprise a mixture of infiltrating precipitation and diluted supra-permafrost water. Carbonate weathering is the dominant weathering type within the catchment, but the weathering of evaporite and silicate is more important on the north-facing and south-facing slopes, respectively, and chemical weathering on the north-facing slope may be enhanced by strong physical erosion during repeated freeze–thaw cycles due to the wet conditions. The results indicate that the surface water hydrochemistry is heterogeneous on the different hillslope units, and that a thicker active layer under climate change may lead to a shift of hydrological and hydrochemical pathways, and thus a decrease in water and solute flux from the hillslopes, with underlying permafrost, to the river channel.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call