Abstract
Groundwater is important for human survival and development, particularly in arid and semi-arid regions. This study aimed to analyze the hydrochemical characteristics, influencing factors, and the impact of human activities on groundwater in the semi-arid plains of western Jilin Province, northwest China. The study collected 88 and 151 phreatic and confined water samples, respectively, which were analyzed for 13 water quality indicators using statistical and graphical methods. In order to investigate the impact of anthropogenic activities on water quality and health risks, the improved combined weighted water quality index (ICWQI) based on the entropy weight, criteria importance though inter-criteria correlation (CRITIC), the coefficient of difference method, subjective weight based on quality grading criteria, and the water quality index (WQI) were proposed to evaluate the water quality of the study area. Meanwhile, the human health risk assessment (HHRA) model was used to assess the risks of nitrate to the health of humans in different ages and sex categories. The results indicated that the groundwater in the study area was weakly alkaline and the main hydrochemical types in the phreatic and confined water were HCO3-·Ca-Mg and HCO3--Na. Rock weathering was the dominant process responsible for the generation of groundwater ions, the ions in groundwater primarily originate from the dissolution of halite, gypsum, and feldspar, while dolomitization promotes an increase in Mg2+. Human activities lead to an increase in NO3- in groundwater and have an impact on water quality and human health risks. The ICWQI method was found to yield more precise and rational assessments of water quality. Groundwater quality is primarily affected by nitrate ions. The areas in which groundwater nitrate posed a higher risk to human health were found to be mainly in the saline-alkali lands of Qian'an, Tongyu, and Zhenlai. Fertilizers, pesticides, and livestock farming activities contribute to the pollution of surface water. This surface contamination then infiltrates abandoned confined wells, leading to contamination of the confined aquifers. This study can improve the understanding of groundwater hydrochemical characteristics and the impact of human activities on groundwater in the study area. This study can also contribute to the study of groundwater in semi-arid regions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have