Abstract

The hydrochemical characteristics and variation rules of water in karst areas are important for the basic research of karst field. Because only a few researches focused on the hydrochemical characteristics of humid subtropical dolomite karst basins in the past, the Shanmuhe Basin and its subbasin Huangzhouhe Basin in Shibing Dolomite Karst World Natural Heritage Site in China were selected as the study area. A total of 215 water samples were collected and analyzed. It was found that the hydrochemical type of subtropical dolomite karst basin is HCO3-Ca·Mg type, which is different from that in limestone areas and shale districts, which is HCO3-Ca type for both; EC, Ca2+, Mg2+, HCO3-, Mg2+/Ca2+, and Mg2+/HCO3- have similar spatial variations, which are lower in allogenic water in the upstream in the northwest of the basin and become higher when the water enters the dolomite karst area in the mid and downstream of the basin, and SIC and SID of the allogenic water in the upstream are below zero, while those become saturated after entering the dolomite area in the mid and downstream; the monthly variation of hydrochemistry shows that the seasonal variation of ion concentration is not obvious, and there is a dilution effect in rainy seasons, but the variation of ion concentration is small and relatively stable; higher HCO3- concentration and Mg2+/Ca2+ in the pure dolomite basin are higher than those in the impure dolomite basin; the main influencing factors of the hydrochemical features are geological background especially the lithology, and the water chemistry is mainly controlled by rock weathering and water-rock interaction; rainfall import is low and the low concentrations of K+, Na+, NO3-, Cl-, and SO42- in water indicate that human activities have little effect on the hydrochemistry in the study area.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.