Abstract
AbstractThe Agua Negra drainage system (30 12′S, 69 50′ W), in the Argentine Andes holds several ice‐ and rock‐glaciers, which are distributed from 4200 up to 6300 m a.s.l. The geochemical study of meltwaters reveals that ice‐glaciers deliver a HCO3−Ca2+ solution and rock‐glaciers a SO42−HCO3−Ca2+ solution. The site is presumably strongly influenced by sublimation and dry deposition. The main processes supplying solutes to meltwater are sulphide oxidation (i.e. abundant hydrothermal manifestations), and hydrolysis and dissolution of carbonates and silicates. Marine aerosols are the main source of NaCl. The fine‐grained products of glacial comminution play a significant role in the control of dissolved minor and trace elements: transition metals (e.g. Mn, Zr, Cu, and Co) appear to be selectively removed from solution, whereas some LIL (large ion lithophile) elements, such as Sr, Cs, and major cations, are more concentrated in the lowermost reach. Daily concentration variation of dissolved rare earth elements (REE) tends to increase with discharge. Through PHREEQC inverse modelling, it is shown that gypsum dissolution (i.e. sulphide oxidation) is the most important geochemical mechanism delivering solutes to the Agua Negra drainage system, particularly in rock‐glaciers. At the lowermost reach, the chemical signature appears to change depending on the relative significance of different meltwater sources: silicate weathering seems to be more important when meltwater has a longer residence time, and calcite and gypsum dissolution is more conspicuous in recently melted waters. A comparison with a non‐glacierized semiarid drainage of comparable size shows that the glacierized basin has a higher specific denudation, but it is mostly accounted for by relatively soluble phases (i.e. gypsum and calcite). Meltwater chemistry in glacierized arid areas appears strongly influenced by sublimation/evaporation, in contrast with its humid counterparts. Copyright © 2007 John Wiley & Sons, Ltd.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have