Abstract

ABSTRACTAn acenaphthene-degrading bacterium putatively identified as Pseudomonas sp. strain KR3 and isolated from diesel-contaminated soil in Lagos, Nigeria was investigated for its degradative and biosurfactant production potentials on crude oil. Physicochemical analysis of the sampling site indicates gross pollution of the soil with high hydrocarbon content (2100 mg/kg) and detection of various heavy metals. The isolate grew luxuriantly on crude oil, engine oil and acenaphthene. It was resistant to septrin, amoxicillin and augmentin but was susceptible to pefloxacin, streptomycin and gentamycin. It was also resistant to elevated concentration of heavy metals such as 1–15 mM lead, nickel and molybdenum. On acenaphthene, the isolate exhibited specific growth rate and doubling time of 0.098 day−1 and 3.06 days, respectively. It degraded 62.44% (31.2 mg/l) and 91.78% (45.89 mg/l) of 50 mg/l acenaphthene within 12 and 21 days. On crude oil, the specific growth rate and doubling time were 0.375 day−1 and 1.85 days with corresponding percentage degradation of 33.01% (903.99 mg/l) and 87.79% (2403.71 mg/l) of crude oil (2738.16 mg/l) within 9 and 18 days. Gas chromatographic analysis of residual crude oil at the end of 18 days incubation showed significant reductions in the aliphatic, alicyclic and aromatic fractions with complete disappearance of benzene, propylbenzene, pristane, phytane, and nC18-octadecane fractions of the crude oil. The isolate produced growth-associated biosurfactant on crude oil with the highest emulsification index (E24) value of 72% ± 0.23 on Day 10 of incubation. The partially purified biosurfactant showed zero tolerance for salinity and had its optimal activity at 27°C and pH 2.0.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.