Abstract

Petroleum oil pollution is a worldwide problem that results from the continuous exploration, production, and consumption of oil and its products. Petroleum hydrocarbons are produced as a result of natural or anthropogenic practices, and their common source is anthropogenic activities, which impose adverse effects on the ecosystem’s nonliving and living components including humans. Phytoremediation of petroleum hydrocarbon-polluted soils is an evolving, low-cost, and effective alternative technology to most traditional remediation methods. The objective of this study is to evaluate the phytoremediation potentiality of Vinca rosea for crude oil-contaminated soil by understanding its properties and involvement in the enhanced degradation of crude oil. The remediation potentiality was determined by evaluating the total petroleum hydrocarbon degradation percentage (TPH%) and changes in the molecular type composition of saturated and aromatic hydrocarbon fractions. TPH% was estimated gravimetrically, and changes in the molecular type composition of saturated and aromatic fractions were measured using gas chromatography and high-performance liquid chromatography, respectively. Sulfur concentration was measured using X-ray fluorescence. Cadmium and lead quantification was measured using Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES). The results revealed that V. rosea enhanced total petroleum hydrocarbon (TPH) degradation and altered the molecular composition of the crude oil. The saturated hydrocarbons increased and the aromatic hydrocarbons decreased. The saturated hydrocarbon fraction in the crude oil showed a wider spectrum of n-paraffin peaks than the oil extracted from unplanted and V. rosea-planted soils. Polyaromatic hydrocarbon degradation was enhanced in the presence of V. rosea, which was reflected in the increase of monoaromatic and diaromatic constituents. This was parallel to the increased sulfur levels in planted soil. The determination of sulfur and heavy metal content in plant organs indicated that V. rosea can extract and accumulate high amounts from polluted soils. The ability of V. rosea to degrade TPH and alter the composition of crude petroleum oil by decreasing the toxicity of polyaromatic hydrocarbons in soil, as well as its capability to absorb and accumulate sulfur and heavy metals, supports the use of plant species for the phytoremediation of crude oil-polluted sites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call