Abstract

Observation data of the hydrothermal processes in the active layer are vital for the verification of permafrost formation and evolution, eco-hydrology, ground-atmosphere interactions, and climate models at various time and spatial scales. Based on measurements of ground temperatures in boreholes, of temperatures and moisture contents of soils in the active layer, and of the mean annual air temperatures at the Qilian, Yeniugou and Tuole meteorological stations in the upper Heihe River Basin (UHRB) and the adjacent areas, a series of observations were made concerning changes in the lower limit of permafrost (LLP) and the related hydrothermal dynamics of soils in the active layer. Because of the thermal diode effect of peat soils, the LLP (at 3600m) was lower on the northern slope of the Eboling Mountains at the eastern branch of the UHRB than that (at 3650–3700m) on the alluvial plain at the western branch of the UHRB. The mean temperature of soils at depths of 5 to 77cm in the active layer on peatlands was higher during periods with subzero temperatures and lower during periods with above-zero temperatures in the vicinity of the LLP on the northern slope of the Eboling Mountains than those at the LLP at the western branch of the UHRB. The thawing and downward freezing rates of soils in the active layer near the LLP on the northern slope of the Eboling Mountains were 0.2 and 1.6 times those found at the LLP at the western branch of the UHRB. From early May to late August, the soil water contents at the depths of 20 to 60cm in the active layer near the LLP on the northern slope of the Eboling Mountains were significantly lower than those found at the LLP at the western branch of the UHRB. The annual ranges of soil temperatures (ARSTs), mean annual soil temperatures (MASTs) in the active layer on peatlands, and the mean annual ground temperature (MAGT) at a depth of 14m of the underlying permafrost were all significantly lower near the LLP on the northern slope of the Eboling Mountains. Moreover, the thermophysical properties of peat soils and high moisture contents in the active layer on peatlands resulted in the lower soil temperatures in the active layer close to the LLP on the northern slope of the Eboling Mountains than those found at the LLP at the western branch of the UHRB in the warm season, especially at the deeper depths (20–77cm). They also resulted in the smaller freezing index (FI) and thawing index (TI) and larger FI/TI ratios of soils at the depths of 5 to 77cm in the active layer near the LLP on the northern slope of the Eboling Mountains. In short, peatlands have unique thermophysical properties for reducing heat absorption in the warm season and for limiting heat release in the cold season as well. However, the permafrost zone has shrunk by 10–20km along the major highways at the western branch of the UHRB since 1985, and a medium-scale retrogressive slump has occurred on the peatlands on the northern slope of the Eboling Mountains in recent decades. The results can provide basic data for further studies of the hydrological functions of different landscapes in alpine permafrost regions. Such studies can also enable evaluations and forecasts the hydrological impacts of changing frozen ground in the UHRB and of other alpine mountain regions in West China.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.