Abstract

The stress field in the hydride precipitation zone is examined, under conditions of hydrogen chemical equilibrium and constant temperature, in the case of non-hardening metals, by applying slip-line theory. It is proven that the hydride precipitation zone, in any geometry, is a constant stress area. In this area, the principal stresses are equal to the respective principal stresses, before hydride precipitation, minus the difference of hydrostatic stress before and after hydride precipitation. The general relations are applied to the case of a stationary sharp mode-I plane-strain crack and the deviations from Prandtl-field are derived, in the [-π/4, +π/4] sector ahead of the tip, where hydrides precipitate. In this case, the hydride precipitation sector is characterized by a constant hydride volume fraction. In addition, hydride precipitation is associated with the development of elastic sectors along the crack faces and the reduction of the centered fan sectors; the relation between hydride precipitation zone stress trace and the extent of the centered fan sector is presented. The mode-I plane-strain blunted crack is also considered and the deviations from the logarithmic spiral slip-lines is discussed together with the reduction of hydride volume fraction as the blunted crack-tip is approached. A general fracture criterion, based on the strength of hydride platelets, is derived, which indicates that fracture occurs, when a critical hydride precipitation zone stress trace dominates. The criterion is applied, under the condition of a dominant K-field annulus, surrounding the plastic zone, and the estimated threshold stress intensity factor of delayed hydride cracking correlates favorably with experimental measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.