Abstract

AbstractThe Taylor‐Couette disc contactor (TCDC) uses the hydrodynamic advantages of the rotating disc contactor (RDC) and Taylor‐Couette reactor. Drop size distribution, dispersed phase holdup and residence time distribution (RTD) of the TCDC in 0.1 m and 0.3 m diameter scale were determined. A correlation for the prediction of the Sauer mean diameter was validated experimentally for 0.3‐m scale. Analysis of RTD suggests application of the tank‐in‐series model. The number of vessels in series rises with increasing hydraulic load and decrease with increasing rate of rotation. The axial dispersion coefficient was determined in order to evaluate backmixing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.