Abstract

Enhanced Geothermal Systems (EGS) can boost sustainable development by providing a green energy supply, although they usually require the hydraulic stimulation of the reservoir to increase fluid flow and energy efficiency due to the low rock permeability at the required depths. The injection of fluids for hydraulic stimulation implies several risks, for instance, induced seismicity. In this work, we perform numerical simulations to evaluate the seismic risk in terms of fault reactivation, earthquake magnitude, and rupture propagation. The computational model includes the fully coupled thermo-hydro-mechanical equations and simulates faults as frictional contacts governed by rate-and-state friction laws. We apply our methodology to the Basel EGS project as a continuation of our previous work, employing the same parameters and conditions. Our results demonstrate that permeability stimulation is not only related to induced seismicity but also can induce a thermal decline of the reservoir over the years and during the energy production. The proposed methodology can be a useful tool to simulate induced earthquakes and the long-term operation of EGS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call