Abstract
HighlightsThe hydraulic performance of the impact sprinkler with circular and non-circular nozzles were measured.A High-Speed Photography (HSP) technique was employed to extract the jet breakup process of the impact sprinkler.Two index equations of jet characteristic lengths and equivalent diameters of non-circular nozzles were fitted. Abstract. An experiment was carried out to investigate the hydraulic performance of an impact sprinkler by using circular and non-circular nozzles. A High-Speed Photography (HSP) technique was employed to extract the breakup process and flow behavior of low-intermediate pressure water jets issued from the different types of orifices. These orifices were selected by the principle of equal flowrate with the same pressure. Moreover, two characteristic lengths: the jet breakup length and the initial amplitude of surface wave were measured. It was found that the sprinkler with circular nozzles produced the largest radius of throw followed by square nozzles and regular triangular nozzles when the cone angle of nozzle and pressure were unchanged, while the sprinkler with regular triangular nozzle had the best variation trend of water distribution and combination uniformity coefficient. Regular triangular jets exhibited a higher degree in breakup and the shortest breakup length compared with the square jets and the circular jets. The initial amplitudes of surface waves of regular triangular jets were larger than the square jets and the circular jets with the same cone angle. Two index equations of jet characteristic lengths and equivalent diameters of both circular and non-circular orifices were fitted with a relative error of less than 10%, which means the fitting formulas were accurate. Keywords: Breakup length, Fitting formula, Hydraulic performance, Initial amplitude, Non-circular jets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.