Abstract

A broken-back culvert has one or more changes in grade within the prismatic barrel profile. One section of a broken-back culvert is usually steep, with the steep slope contributing to high outlet velocities unless a hydraulic jump forms upstream from the culvert outlet. Predictive equations have been published for a wide range of experimental conditions but still do not describe the hydraulics of a jump as it traverses the steeply sloped section and the most downstream section of a broken-back culvert. A computer program, the Broken-Back Culvert Analysis Program (BCAP), analyzes the hydraulics of circular or box-shaped broken-back culverts and provides a comprehensive design tool for engineers. It predicts whether a hydraulic jump will occur and, if so, where it begins and ends. Analyses are performed for 10 discharges. Outputs include rating curves for headwater and outlet depths and outlet velocity and tabulations of hydraulic parameters for each discharge. The water surface profiles throughout the culvert, except through the hydraulic jump, are computed and are plotted on the screen. Experiments were performed with model culverts to assess the accuracy of the predictive equations in BCAP for headwater depth, the location of a hydraulic jump, and the hydraulic jump length. The predictions for the headwater depth at the culvert inlet matched the experimental observations well, but predictions for hydraulic jump location and length were less satisfactory. BCAP has been used for hundreds of design projects in Nebraska and has been downloaded almost 300 times from at least 22 different states. It is recommended that BCAP be improved as better experimental data become available.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call