Abstract

Conventional reservoirs have been fracture stimulated using acid fracturing and proppant fracturing.Acid fracturing is performed to improve well productivity in acid-soluble formations such aslimestone, dolomite, and chalk. Hydrochloric acid is generally used to create an etched fracture,which is the main mechanism for maintaining the fracture open during the life of a well. Proppantfracturing is an alternative option that has been applied in carbonaceous and siliceous formations.There is no quantitative method to provide an answer of whether acid fracturing or proppantfracturing is an appropriate stimulation method for a given carbonate formation. How rockmechanics can be applied to decide on what method is more effective? Laboratory experiments havebeen performed to simulate acid etched to study the effect of elastic, plastic and viscoelastic rockbehavior and their effects on fracture conductivity. Comparison of acid vs. proppant fracturingconductivity in carbonate formation is presented.Fracturing low permeability reservoirs is totally different than fracturing tight formations. Thefracture geometry required in low permeability reservoirs need to be planar, conductive andpenetrating deep in the reservoir. Fracture complexity in these reservoirs is to be avoided foroptimum stimulation treatment. However, in fracturing tight formation, a complex fracture networkis desirable for better recovery. Creating multiple fractures in horizontal wells without the use ofmechanical intervention, is becoming essential especially in tight gas reservoirs. We have learnedhow to initiate hydraulic fractures into a specific direction and place as many fractures as desired inhorizontal wells but with casing and perforation. The challenge now is to initiate weak point acrossthe horizontal well such that fracturing fluid will initiate a fracture there. How rock mechanics hasbeen applied to achieve this objective? We are fracturing tight gas sand in harsh environment, atdepth more than 18000 ft, of temperature close to 400 °F, and one can figure out the extreme in-situstresses relevant to this depth.When the reservoir pressure decreases, the elastic displacement in response to the increase ineffective stress will cause natural fractures to close leading to a decline in reservoir productivity.
 The matrix medium feeds the natural tensile fractures which carry the fluids to the wellbore. Thedecline in conductivity with increasing effective stress should follow a logical declining rate tosupport a given production rate. How the concept of effective stress has been applied to understandthe stress-dependent conductivity of various conductive components of a given reservoir? Rockmechanics testing of these stress sensitive reservoirs becomes vital to optimize fracturing tightformations.Economical production from tight reservoirs, including shale gas and shale oil formations, requireshorizontal well drilling and massive proppant hydraulic fracturing stimulation. The stimulationinvolves generating sufficient fractures network or stimulated reservoir volume (SRV), which isachieved by placing optimized stimulation treatments along the horizontal section of wellboresideally drilled from multi-well pads to increase the production rate and ultimate recovery. Hydraulicfracturing in naturally fractured formations is characterized by generating a fractures’ network thatshould be designed for in extremely low permeability of unconventional reservoirs. Fractures shouldextensively reach shale matrix to achieve commercial gas production. Therefore, production rate andultimate recovery depend on the size of the created SRV.The transport phenomena controlling fluid flow through tight formation is no longer sufficient to bemodeled by Darcy’s flow. Diffusion and imbibition are important transport mechanisms. The conceptof osmosis and flow through a semi-permeable membrane component are critical. Additionally,diffusion and a special case of molecular flow due to Knudson effect will be discussed. Conventionalreservoir simulation collapses when trying to simulate fluid flow through tight reservoirs. Numericalstudies on a hydraulically fractured well to simulate the dynamic processes during fracturinginjection, following well shut-in (soaking), and production are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call