Abstract

The Buda Thermal Karst area, in central Hungary, is in the focus of research interest because of its thermal water resources and the on-going hypogenic karstification processes at the boundary of unconfined and confined carbonates. Understanding of the discharge phenomena and the karstification processes requires clarification of the groundwater flow conditions in the area. Accordingly, the aim of the present study was to present a hydraulic evaluation of the flow systems based on analyses of the archival measured hydraulic data of wells. Pressure vs. elevation profiles, tomographic fluid-potential maps and hydraulic cross sections were constructed, based on the data distribution. As a result, gravitational flow systems, hydraulic continuity, and the modifying effects of aquitard units and faults were identified in the karst area. The location of natural discharge areas could be explained and the hydraulic behavior of the Northeastern Margin Fault of the Buda Hills could be determined. The flow pattern determines the differences in the discharge distribution (one- and two-component) and related cave-forming processes between the Central System (Rozsadomb area) and Southern System (Gellert Hill area) natural discharge areas. Among the premises of hypogenic karstification, regional upward flow conditions were confirmed along the main discharge zone of the River Danube.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call