Abstract

Karst aquifers can be particularly vulnerable to human activities and climate change due to their relatively high degree of connection with the surface. This study utilized an ensemble of event-based recharge calculation methods to address the problem of structural uncertainty for the example of the Western Mountain Aquifer (WMA), a Mediterranean karst aquifer located in Israel and the West Bank. Spatially distributed recharge estimates derived from the Soil and Water Assessment Tool (SWAT) and the process-based infiltration model (PIM) were compared to site-specific, empirical regression models. The SWAT and PIM mean annual recharge estimates ranged from 32–34.6% of precipitation, almost equating to the results of empirical regression models (32–36%). Future recharge predictions under the influence of climate change were quantified by parameterizing the SWAT and PIM methods with a downscaled regional climate model of Israel. SWAT predicts a 23% decrease in recharge by 2051–2070 relative to 1981–2001. In contrast, PIM shows a 9% decrease, possibly due to the representation of infiltration through preferential flow pathways and exclusion of surface runoff processes. These divergent projections underline key methodological differences in the representation of hydrological processes. Nevertheless, both methods effectively provided good estimates of groundwater recharge. The recharge rates estimated from the various methods were integrated into MODFLOW to assess their relative impacts on groundwater storage dynamics. The ensemble of MODFLOW projected groundwater storage outputs can provide guidance for sustainable groundwater management in the region.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.