Abstract
Co-occurring species often have different strategies for tolerating daily cycles of water stress. One underlying parameter that can link together the suite of traits that enables a given strategy is wood density. Here we compare hydraulic traits of two pioneer species from a tropical forest in Panama that differ in wood density: Miconia argentea and Anacardium excelsum. As hypothesized, the higher wood density of Miconia was associated with smaller diameter vessels and fibres, more water stress-resistant leaves and stems, and roughly half the capacitance of the lower wood density Anacardium. However, the scaling of hydraulic parameters such as the increases in leaf area and measures of hydraulic conductivity with stem diameter was remarkably similar between the two species. The collection of traits exhibited by Miconia allowed it to tolerate more water stress than Anacardium, which relied more heavily on its capacitance to buffer daily water potential fluctuations. This work demonstrates the importance of examining a range of hydraulic traits throughout the plant and highlights the spectrum of possible strategies for coping with daily and seasonal water stress cycles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.