Abstract
ABSTRACTTranspirational cooling is crucial for plant thermal regulation to avoid overheating; however, during prolonged and/or acute heat stress it often necessitates stomatal closure to reduce the risk of hydraulic failure due to dehydration. The intricate interplay between thermal regulation, water transport and use may govern plant performance in water‐limited and simultaneously heat‐stressed environments, yet this remains inadequately understood. Here, in a common garden, we evaluated the functional associations among physiological characteristics related to leaf thermoregulation, heat tolerance, xylem water transport, and stomatal regulation in eight shrub species commonly used for fixing active sand dunes in northern China. Our study showed that traits associated with heat adaptation and xylem hydraulics were closely related to stomatal regulation. More isohydric shrub species with higher water transport efficiency possessed stronger transpirational cooling capacity; whereas the more anisohydric species demonstrated greater tolerance to overheating. Moreover, leaf heat tolerance was strongly coordinated with drought tolerance reflected by leaf turgor loss point. These results underscore the importance of stomatal regulation in shaping plant thermal adaptive strategies and provide valuable insights into the coupling of water and heat‐related physiological processes in plants adapted to sandy land environments prone to combined drought and heat stresses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.