Abstract

We present molecular dynamics simulations of solvated cocaine and its metabolites in water, using both the Optimized Potentials for Liquid Simulations (OPLS) force field and the same force field but with Quantum Theory of Atoms In Molecules (QTAIM) atomic charges. We focus on the microscopic aspects of solvation, e.g. hydrogen bonds, and investigate influence of partial charges applied. Hydrophobicity or hydrophicility of these molecules were analyzed in terms of solute–solvent radial distribution functions and, for their most hydrophilic atoms, by spatial density functions. These hydration studies allowed us to classify these molecules according to their total coordination numbers, from the most hydrated metabolite to least hydrated, and this trend matches the degree of each metabolite is excreted in urine of patients with a high consumption of cocaine. Finally, we observed that QTAIM charges provide a more physically reasonable description of electrostatic environment of these solvated molecules than those of OPLS charges.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.