Abstract
Quantum mechanical/molecular mechanics (QM/MM) calculations were carried out in order to study the theoretical structures of l-tyrosine in both gas phase and in aqueous solution and observe the changes that occur on the structural and vibrational properties in two phases. Therefore, the molecule was characterized by infrared and Raman spectroscopy in solid phase and aqueous solution. Optimized geometries and relative stabilities for the zwitterion l-tyrosine derivatives have been calculated taking into account the solvent effects by using the self-consistent reaction field (SCRF) theory. For a complete assignment of the IR and Raman spectra of l-tyrosine in solid and aqueous solution phases, density functional theory (DFT) calculations were combined with Pulay's scaled quantum mechanical force field (SQMFF) methodology in order to fit the theoretical wavenumber values to the experimental ones. A good agreement between theoretical and available experimental results is found.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.