Abstract

We have studied L-ascorbic acid and characterized it by infrared spectroscopy in solid and aqueous solution phases. The density functional theory (DFT) method together with Pople's basis set show that three stable molecules for the compound have been theoretically determined in the gas phase, and that an average of only two more stable conformations are present in the solid phase, as it was experimentally observed. The harmonic vibrational wavenumbers for the optimized geometries of both structures were calculated at B3LYP/6-31G*and B3LYP/6-311++G** levels at the proximity of the isolated molecule. For a complete assignment of the vibrational spectra in the compound solid and aqueous solution phases, DFT calculations were combined with Pulay's scaled quantum mechanics force field methodology in order to fit the theoretical wavenumber values to the experimental ones. In this way, a complete assignment of all the observed bands in the infrared spectrum for l-ascorbic acid was performed. The natural bond orbital study reveals the characteristics of the electronic delocalization of the three structures while the corresponding topological properties of electronic charge density are analyzed by employing Bader's atoms-in-molecules theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.