Abstract
The viscous properties of nanoscopically confined water are important when hydrated surfaces in close contact are sheared against each other. Numerous experiments have probed the friction between atomically flat hydrated surfaces in the subnanometer separation regime and suggested an increased water viscosity, but the value of the effective viscosity of ultraconfined water, the mechanism of hydration layer friction, and the crossover to the dry friction limit are unclear. We study the shear friction between polar surfaces by extensive nonequilibrium molecular dynamics simulations in the linear-response regime at low shearing velocity, which is the relevant regime for typical biological applications. With decreasing water film thickness we find three consecutive friction regimes: For thick films friction is governed by bulk water viscosity. At separations of about a nanometer the highly viscous interfacial water layers dominate and increase the surface friction, while at the transition to the dry friction limit interfacial slip sets in. Based on our simulation results, we construct a confinement-dependent friction model which accounts for the additive friction contributions from bulklike water, interfacial water layers, and interfacial slip and which is valid for arbitrary water film thickness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.