Abstract
In the range of millimeter wavelengths the dielectric properties of aqueous solutions of some biologically active ligands (potential anticarcinogen chlorophyllin; pharmacological drug caffeine; polyamine putrescine; mutagens proflavine and ethidium bromide; actinocin derivative, an analogue of antitumor antibiotic actinomycin D) and DNA complexes with these substances were studied. It was shown that complex formation is accompanied by the change in dielectric properties of the solution. These changes during interaction of DNA with the first three compounds correspond to a decrease in hydration (compared with the total hydration of free components), and in other cases they cause an increase in hydration. The number of water molecules bound with both the ligand and DNA nucleotide in the complex was estimated. The results were compared with existing models of DNA interaction with the studied substances.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.