Abstract

The mechanisms of DNA interaction with actinomycin D (AMD), 7-amino-actinomycin D (7-AAMD), and ethidium bromide (EtBr) were studied in aqueous solutions and in condensed state (films coating plates). The use of the methods of absorption (UV, IR, and visible spectral ranges) and fluorescence (steady-state, polarization, and phase-modulation) spectroscopy revealed that (1) the formation of DNA complexes with 7-AAMD in solution was not accompanied by energy transfer from photoexcited nucleotides to phenoxazone chromophore and (2) the mechanism of ligand incorporation was distinct from stacking. In the film of the DNA-7-AAMD complex, which simulated the native state in a biological cell, the efficiency of the energy transfer was high. This indicates that a stacking-type mechanism underlies actinomycin intercalation into DNA. In the presence of high concentrations of 7-AAMD in the film, DNA denatured and its double-helical structure, degraded. In the DNA-AMD complex, the native B-form of DNA molecule was conserved both in films and in solution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.