Abstract
At present, mainstream room-temperature phosphorescence (RTP) emission relies on organic materials with long-range charge-transfer effects; therefore, exploring new forms of charge transfer to generate RTP is worth studying. In this work, indole-carbazole was used as the core to ensure the narrowband fluorescence emission of the material based on its characteristic short-range charge-transfer effect. In addition, halogenated carbazoles were introduced into the periphery to construct long-range charge transfer, resulting in VTCzNL-Cl and VTCzNL-Br. By encapsulating these phosphors into a robust host (TPP), two host-guest crystalline systems were further developed, achieving efficient RTP performance with phosphorescence quantum yields of 26% and phosphorescence lifetimes of 3.2 and 39.2 ms, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.