Abstract

Coupling between multipolar modes of different orders has not been investigated in depth, despite its fundamental and practical relevance in the context of optical metamaterials and metasurfaces. Here, we use an electromagnetic multipole expansion of both the scattered fields and the oscillating electric currents to reveal the multipolar excitations in a nanoparticle positioned close to another nanoparticle. The considered single-particle multipoles radically differ from multipoles excited in a pair of nanoparticles. Using the expansion, we reveal the multipole character of the electric currents and the contributions of the multipole moments to the scattering cross section of each particle, including the effect of their interaction. We find that light scattered by the particles plays the role of an inhomogeneous incident field for each of the particles, leading to hybridization of the originally independent orthogonal multipole resonances. For an incident plane wave polarized along the nanoparticle pair, the hybridization of the dipole and quadrupole resonances gives rise to a significant narrowband resonance in the spectrum of the dipole scattering, which can be of interest for various applications, e.g. in surface-enhanced fluorescence and Raman spectroscopy. In general, this work shows that the multipole-multipole interaction between nanoparticles must be treated by taking into account also such hybridized multipole resonances.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.