Abstract

Abstract In this study, the spatial mode evolution of a chiral polarized beam during reflection on an isotropic medium surface at Brewster angle is both theoretically and experimentally investigated. In this process, the topological charge of the reflection field’s horizontal component increases (decreases) by one, relative to the specific left (right) elliptical polarization incident beam. While incident l i -order vortex beam is in a certain polarization state, the intensity distribution of the reflection field’s horizontal component appears as the interference pattern of the l i ± 1 -order output vortex beams. The conversion occurs between the spin and orbital angular momentum and does not violate the conservation of the total angular momentum. We explain the physical mechanism of this phenomenon using phase shift theorem, and analyze the effect of ellipticity and polarization angle on this physical phenomenon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.