Abstract

AbstractRobot path planning has been paid much interest by many researchers to be utilized in many industrial applications. In order to attain accurate robot movements, the path planning methods are improved. In this paper, the artificial potential field has been enhanced to find the robot path that follows the dynamic goal and avoids the dynamic obstacle. The D* algorithm cost is utilized to add to the attractive potential equations, taking into consideration the dynamically changing goal point and robot environment. The essential functions of the prospered D*-based potential field method are solving the artificial potential field problems in generating the potential area and path, as well as obtaining the best path that achieves the whole motion criteria, especially the minimum distance. Simulation results of the implementation of the proposed D*-based artificial potential field demonstrate that the proposed method has promising potential for efficient robot path planning in following the dynamic goal and avoiding the dynamic obstacles with achieving the minimum distance and overcoming the potential field problems.KeywordsPath planningArtificial potential fieldD* algorithmDynamic environment

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.