Abstract
A new algorithm named random particle optimization algorithm (RPOA) for local path planning problem of mobile robots in dynamic and unknown environments is proposed. The new algorithm inspired from bacterial foraging technique is based on particles which are randomly distributed around a robot. These particles search the optimal path toward the target position while avoiding the moving obstacles by getting help from the robot’s sensors. The criterion of optimal path selection relies on the particles distance to target and Gaussian cost function assign to detected obstacles. Then, a high level decision making strategy will decide to select best mobile robot path among the proceeded particles, and finally a low level decision control provides a control signal for control of considered holonomic mobile robot. This process is implemented without requirement to tuning algorithm or complex calculation, and furthermore, it is independent from gradient base methods such as heuristic (artificial potential field) methods. Therefore, in this paper, the problem of local mobile path planning is free from getting stuck in local minima and is easy computed. To evaluate the proposed algorithm, some simulations in three various scenarios are performed and results are compared by the artificial potential field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.