Abstract
Motivated by recent photoemission and pump-probe experiments, we report determinant Quantum Monte Carlo simulations of hybridization fluctuations in the half-filled periodic Anderson model. A tentative phase diagram is constructed based solely on hybridization fluctuation spectra and reveals a crossover regime between an unhybridized selective Mott state and a fully hybridized Kondo insulating state. This intermediate phase exhibits nonlocal hybridization fluctuations and consequentially the so-called "band bending" and a direct hybridization gap as observed in angle-resolved photoemission spectroscopy and optical conductivity. This connects the band bending with the nonlocal hybridization fluctuations as proposed in latest ultrafast optical pump-probe experiment. The Kondo insulating state is only established at lower temperatures with the development of sufficiently strong inter-site hybridization correlations. Our work suggests a unified picture for interpreting recent photoemission, pump-probe, and optical observations and provides numerical evidences for the importance of hybridization fluctuations in heavy fermion physics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.