Abstract

Hamiltonian Cycle Problem is one of the most explored combinatorial problems. Being an NP-complete problem, heuristic approaches are found to be more powerful than exponential time exact algorithms. This paper presents an efficient hybrid heuristic that sits in between the complex reliable approaches and simple faster approaches. The proposed algorithm is a combination of greedy, rotational transformation and unreachable vertex heuristics that works in three phases. In the first phase, an initial path is created by using greedy depth first search. This initial path is then extended to a Hamiltonian path in second phase by using rotational transformation and greedy depth first search. Third phase converts the Hamiltonian path into a Hamiltonian cycle by using rotational transformation. The proposed approach could find Hamiltonian cycles from a set of hard graphs collected from the literature, all the Hamiltonian instances (1000 to 5000 vertices) given in TSPLIB, and some instances of FHCP Challenge Set. Moreover, the algorithm has O(n3) worst case time complexity. The performance of the algorithm has been compared with the state-of-the-art algorithms and it was found that HybridHAM outperforms others in terms of running time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.