Abstract

There is increasing interest by the naval engineering community in permanent monitoring systems that can monitor the structural behaviour of ships during their operation at sea. This study seeks to reduce the cost and installation complexity of hull monitoring systems by introducing wireless sensors into their architectural designs. Wireless sensor networks also provide other advantages over their cable-based counterparts such as adaptability, redundancy, and weight savings. While wireless sensors can enhance functionality and reduce cost, the compartmentalised layout of most ships requires some wired networking to communicate data globally throughout the ship. In this study, 20 wireless sensing nodes are connected to a ship-wide fibre-optic data network to serve as a hybrid wireless hull monitoring system on a high-speed littoral combat vessel (FSF-1 Sea Fighter). The wireless hull monitoring system is used to collect acceleration and strain data during unattended operation during a one-month period at sea. The key findings of this study include that wireless sensors can be effectively used for reliable and accurate hull monitoring. Furthermore, the fact that they are low-cost can lead to higher sensor densities in a hull monitoring system thereby allowing properties, such as hull mode shapes, to be accurately calculated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.