Abstract
Hybrid optimization, a new approach to design optimization employing both symbolic reasoning and algorithmic analysis, has been applied to the design of kinematic pairs in mechanisms. This hybrid design methodology provides a three-step systematic approach for (1) combining the degrees-of-freedom found in simple, lower kinematic pairs to obtain more complex but robust higher pairs, (2) judging inappropriately assigned joints for the elimination of redundant kinematic constraints and harmful mobilities, and (3) assisting nonexpert designers in applying nonlinear programming algorithms for detailed numerical design optimization of kinematic pairs. An example taken from the design of a spatial mechanism, specifically a universal joint, is presented and serves to demonstrate the utility of this procedure for detailed hybrid design optimization of kinematic pairs in mechanisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.