Abstract
Excessive residues of nitrofurantoin (NFT) can cause serious contamination of water bodies and food, and potential harm to ecosystems and food safety. Given that, rapid and efficient detection of NFT in real samples is of particular importance. MoS2 is a promising electrochemical material for this application. Here, MoS2 was modulated by Metal-organic framework through the interfacial microenvironment to enhance the catalytic activity and carbonized to form Co2Mo3O8 nanosheets with high electrical activity. The resulting Co2Mo3O8/MoS2 hybrid structure can be used to prepare highly sensitive NFT electrochemical sensor. The Co2Mo3O8/MoS2@CC electrochemical sensor exhibits strong electrochemical properties due to its fast electron transfer, excellent electrical conductivity, abundant defect sites, and high redox response. Based on this, this electrochemical sensor exhibited excellent electrocatalytic activity for NFT with a wide linear detection range, low detection limit, and high sensitivity. Moreover, the electrode was successfully applied to detect NFT in milk, honey, and tap water, strongly confirming its potential in real samples. This work could furnish the evidence for interfacial microenvironmental regulation of MoS2, and also offer a novel candidate material for NFT sensing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.