Abstract

As one of the most important technologies in the coming “More than Moore” era, neuromorphic computing critically depends on the development of synaptic devices. Here we take advantage of the synergy of the strong broadband optical absorption of boron (B)-doped silicon nanocrystals (Si NCs) and the efficient charge transport of two-dimensional (2D) WSe 2 to make synaptic devices based on the hybrid structure of Si NCs and 2D WSe 2 . The Si-NC/WSe 2 synaptic devices can be optically stimulated in a broad spectral region from the ultraviolet (UV) to near-infrared (NIR), exhibiting important synaptic functionalities. The energy consumption of the Si-NC/WSe 2 synaptic devices may be as low as ∼ 75 fJ. This work has important implication for the development of synaptic devices by exploiting the abundant library of semiconductor NCs and 2D materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call