Abstract
Diverse synaptic plasticity with a wide range of timescales in biological synapses plays an important role in memory, learning, and various signal processing with exceptionally low power consumption. Emulating biological synaptic functions by electric devices for neuromorphic computation has been considered as a way to overcome the traditional von Neumann architecture in which separated memory and information processing units require high power consumption for their functions. Synaptic devices are expected to conduct complex signal processing such as image classification, decision‐making, and pattern recognition in artificial neural networks. Among various materials and device architectures for synaptic devices, 2D materials and their van der Waals (vdW) heterostructures have been attracting tremendous attention from researchers based on their capacity to mimic unique synaptic plasticity for neuromorphic computing. Herein, the basic operations of biological synapses and physical properties of 2D materials are discussed, and then 2D materials and their vdW heterostructures for advanced synaptic operations with novel working mechanisms are reviewed. In particular, there is a focus on how to design synaptic devices with the vdW structures in terms of critical 2D materials and their limitations, providing insight into the emerging synaptic device systems and artificial neural networks with 2D materials.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.