Abstract

BACE1, also called beta-secretase or memapsin 2, is an extensively studied aspartic protease, involved in etiopathogenesis and progression of Alzheimer's disease (AD). We report herein a modified structure-based virtual screening protocol that augments the lead identification process against BACE1 during virtual screening endeavors. A hybrid structure-based virtual screening protocol that incorporates elements from both ligand-based and structure-based techniques was used for the identification of prospective small molecule inhibitors. Virtual screening, using an active-site-derived pharmacophore, followed by ROCS (rapid overlay of chemical structures)-based GOLD (genetic optimization in ligand docking) docking was used to identify a library of focused candidates. The efficacy of the ROCS-based GOLD docking method together with our customized weighted consensus scoring function was evaluated against conventional docking methods for its ability to discern true positives from a screening library. An in-depth structural analysis of the binding mode of the top-ranking molecules reveals that emulation of the curial interaction patterns deemed necessary for BACE1 inhibition. The results obtained from our validation study ensure the superiority of our docking methodology over conventional docking methods in yielding higher enrichment rates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call