Abstract

In a companion paper [M. L. Liu and C. W. S. To, Comput. Struct. 54, 1031–1056 (1995)] theories and incremental formulation of nonlinear shell structures discretized by the finite element method are discussed. The updated Lagrangian formulation and the incremental Hellinger-Reissner variational principle are adopted. The independently assumed fields employed are the incremental displacements and incremental strains. Based on the theory and incremental formulation explicit element stiffness and mass matrices of three node flat triangular shell finite elements are derived. In the present paper the derived element matrices are applied to nine examples. The latter include static and dynamic response analysis of shell structures with geometrical, material, and geometrical and material nonlinearities. The formulation adopted and element matrices derived are found to be accurate, flexible and applicable to various types of shell structures with geometrical and material nonlinearities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.